
Concept Learning with Approximation: Rough
Version Spaces

Vincent Dubois and Mohamed Quafafou

IRIN, Université de Nantes, France

Abstract. The concept learning problem is a general framework
for learning concept consistent with available data. Version Spaces
theory and methods are build in this framework. However, it is
not designated to handle noisy (possibly inconsistent) data. In this
paper, we use rough set theory to improve this framework. Firstly, we
introduce a rough consistency. Secondly, we define an approximative
concept learning problem. Thirdly, we present a Rough Version Space
theory and related methods to address the approximative concept
learning problem. Using a didactic example, we put these methods into
use. An overview of possible extension of this work concludes this article.

Keywords. Approximation, Concept Learning, Rough Sets, Version
spaces

1 Introduction

The concept learning problem is a well-known and fruitful framework, as numer-
ous developments in the Version Space field attests, but is ill-suited to real-word,
inconsistent data. This come from the harsh consistency property it is build
upon: either a concept is consistent with the data, either it is not. We alleviate
this problem by using rough set theory to soften the consistency requirement.
As a consequence, newly defined approximative concept learning framework and
in particular Rough Version Space can handle inconsistent data, as shown in our
example.

This paper is organized as follow: section 2 introduces the Concept Learning
Task and version spaces and their properties. Section 3 presents an approxima-
tive version of concepts developed in section 2. Section 4 proposes algorithms
and methods to handle the approximative concept learning problem. Section 5
puts them in action on a didactic example. Section 6 concludes this paper.

2 Concept Learning

2.1 Notations

We note �A the complementary of A in the space it is defined. We note segment
[A,B] the set of all element x such that A ⊂ x ⊂ B. If f : A �→ B, and C ⊂ A,
we note f(C) = {c ∈ B|∃a ∈ C, f(a) = c}.

J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 239–246, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

240 V. Dubois and M. Quafafou

We note I the set of all instances. The set 2I of all concepts is denoted C.
Let LI and LC denotes language on I and C. The function RI : LI �→ I (resp.
RC : LC �→ C) maps a instance (resp. a concept) representation to the instance
(resp. a concept) it represents. RC and RI are not necessarily injective nor
surjective, i.e. some concept or instances may have many or no representation
in the chosen language.

Definition 1. A concept c ∈ C is said to cover an instance i ∈ I iff i ∈ c.
This definition extends to the language by the following way: ∀i ∈ LI ,∀c ∈
LC , c cover i ⇔ RI(i) ∈ RC(c)

Definition 2. A concept c is said to be consistent with a set of positive instances
P and a set of negative instances iff P ⊂ c and c ∩ N = ∅

Definition 3. The concept class of representable concept is the set of all
concepts having a representation in the concept language and is defined by
CRC

= RC(LC)

2.2 Version Spaces

Mitchell [1] introduced the theoretical framework of versions spaces. He defines
Version Space as the set of all concepts in LC that are consistent with the sets
of positive and negative examples P and N .

V SLC
(P,N) = {c ∈ LC |RC(c) ⊂ RI(P), RC(c) ∩ RI(N) = ∅} (1)

= R−1
C ([RI(P), �RI(N)]) (2)

Mitchell proposes to represent version spaces by the mean of their boundaries.
Both the Candidate Elimination algorithm and the Description Identification [2]
Algorithms use maximally specific and maximally general concepts sets (resp. S
and G) to represent the version space, and effectively compute them. The main
flaw of this approach is the size of these boundaries. Haussler [3] has pointed
out that the boundary size may grow exponentially in the number of examples.
Thus, alternative representations have been proposed for the versions spaces.

Hirsh proposes to replace the set of maximally general concept G by the
list of negative examples [4], and later to replace both S and G by the list of
examples [5]. He also highlighted properties of intersecting version space: the
intersection of two version spaces is the version space built by using P1 ∪P2 and
N1∪N2 as positive and negative example sets. Another approach is to keep only
one element of each boundary set, together with backtrack information [6]. This
prevent exponential growth of the boundary set at reasonable computational
cost. In order to address inconsistency problem, M. Sebag proposes to compute
[7] simple version spaces (one positive example and all negative consistent ones)
for each positive example and perform a vote among them.

Concept Learning with Approximation: Rough Version Spaces 241

3 Approximation and Version Spaces

Rough Set Theory (RST) efficiently deals with sets approximation [8]. Given
a relation ∼ on C, it defines the dual operators H and L on 2C such that
H(A) = {a ∈ S/∃b ∈ A, a ∼ b} and L(A) = {a ∈ S/∀b, a ∼ b ⇒ b ∈ A}
These operator were initially defined by Pawlak, with an equivalence relation
∼. However, requiring an equivalence relation is a strong constraint, and it has
been relaxed, the definition of H and L being applied on any relation. Of course,
many of the original RST properties are lost (see [9] for correspondence between
∼ properties and H and L ones).

3.1 Rough Consistency

Definition 4. A concept c ∈ C (resp. ∈ LC) is said to be roughly consistent
with positive and negative example sets P,N iff c (resp. RC(c)) is similar to a
concept consistent with P,N .

Proposition 1. A concept c roughly consistent with the example sets (P1 ∪
N1, P2 ∪ N2) is necessarily roughly consistent with (P1, N1) and roughly con-
sistent with (P2, N2). The converse proposition does not necessarily holds.

Proof. ∃c′ consistent with (P1 ∪ N1, P2 ∪ N2) such that c ∼ c′. c′ is consistent
with both (P1, N1) and (P2, N2). Thus c is roughly consistent with both. The
converse is not necessarily true because the concept consistent with (P1, N1) and
(P2, N2) is not necessarily the same.

Definition 5. We call a partition of the set of example (P,N) a strategy and
note it Pa. The family of positives and negatives examples are noted (PPa)i and
(NPa)i respectively. Whenever there is no ambiguity about Pa, it is omitted.

We now express the approximative concept learning problem:
Given:
– a language LI of instance representation and a language LC of concept rep-

resentation;
– a relation cover ⊂ LI × Lc

– a similarity relation ∼ on concepts ⊂ C × C
– a set of positive example P ⊂ LI and a set of negative example N ⊂ LI

– a strategy Pa based on (P,N)

Find: a concept c ∈ LC such that RC(c) is roughly consistent with each (Pi, Ni).
The approximative learning problem definition introduces two new element:

the similarity relation and the strategy. The relation defines how to perform
approximation. The strategy defines which examples are to be processed simul-
taneously.
Proposition 2. Let us consider two different approximative concept learning
problem (ACLP and ACLP ′) that are alike in respect to all parameters except
the strategy (Pa and Pa′). If the strategy Pa′ is finer than the strategy Pa, then
every solution to ACLP is a solution to ACLP ′.

242 V. Dubois and M. Quafafou

Proof. This comes from proposition 1: if a concept is consistent with a set of
examples, it is consistent with any of its subset. Each (P ′

i , N
′
i) in Pa′ is a subset

of some Pj , Nj in Pa. Thus, any concept roughly consistent with each Pj , Nj is
also roughly consistent with each (P ′

i , N
′
i). As LC is the same, the proposition

holds.

3.2 RVS Definition

Definition 6. Given an instance space I, an instance language LI and its rep-
resentation function RI , a concept language LC and its representation function
RC , a similarity relation ∼ on concepts and the associated approximation oper-
ator H and L, a set of positive examples P , a set of negatives examples N , a
partition Pa of (P,N), the rough version spaces RV SH(Pa) is defined by:

RV SH(Pa) =
⋂

i

R−1
C (H([RI(Pi), �RI(Ni)])) (3)

Although H and L are dual operator, RV SH and RV SL do not share the
same properties. We will show that RV SH is the most important and useful in
this pair. This work is focused on RV SH , given its nice properties in handling
inconsistency.

Proposition 3. RV SH(Pa) is exactly the set of all solutions to the approximate
concept learning problem

Proof. Using H definition, we expand H([RI(Pi), �RI(Ni)]): {c ∈ C/∃c′ ∈
[RI(Pi), �RI(Ni)], c ∼ c′}, i.e. the set of all concepts similar to any concept
consistent with (Pi, Ni). It holds that R−1

C (H([RI(Pi), �RI(Ni)]) is the set of
all concept in LC that are roughly consistent with (Pi, Ni). Hence, the set of
concepts in LC that is consistent with all (Pi, Ni) is the intersection of these set,
RV SH(Pa).

We now define a notation for rough version space in the particular case where
the strategy is a singleton.

Definition 7. We call simple RVS a RVS defined using a strategy Pa =
{(P,N)} that is singleton. It is convenient to note it by the following way:

RV SH(P,N) = RV SH({(P,N)} = R−1
C (H([RI(P), �RI(N)])) (4)

Property 1. Any RVS can be expressed by using only simple RVS: RV SH(Pa) =⋂
i RV SH(Pi, Ni)

Most result can be established on simple RVS and generalized to any RVS
by using this fundamental property.

Property 2. Hirsh property on intersection does not hold with simple RVS.
RV SH(P1 ∪ P2, N1 ∪ N2) ⊂ RV SH(P1, N1) ∩ RV SH(P2, N2), and equality does
not hold in general.

Concept Learning with Approximation: Rough Version Spaces 243

Proof. Using property 3, we translate directly property 1 in RVS terms.

Property 3. If we use the equality relation to build our upper operator (i.e.
identity operator Id), we get: V SLC

(P,N) = RV SId(P,N)

Any classical VS is particular case of a simple RVS.

3.3 Properties

The main bias in version space is the language. Only representable concept can
be learn trough version space. Rough Version Spaces add a new bias to the
language: the upper approximation operator H.

Definition 8. The induced concept class CH associated with the upper approx-
imation operator H is defined by CH = H(C)

Property 4. The induced concept class CH is directly related to the relation ∼:

CH = {c|∃c′ ∈ C, c ∼ c′} (5)

This property is useful when creating a relation with a given induced concept
class. It is also possible to restrict ∼ on CRC

× C. We get CH ⊂ CRC
without

changing RV SH(Pa).

Proposition 4. If Pa is finer than Pa′, then RV SH(Pa′) ⊂ RV SH(Pa)

Proof. As RV SH(Pa) is the set of all solution to the approximate concept learn-
ing, this proposition is a direct application of proposition 2.

Proposition 5. If ∼ restriction on CRC
× C is reflexive, then

V SLC
(P,N) ⊂ RV SH(P,N) ⊂ RV SH(Pa) (6)

Proof. First part: Let c be a concept in V SLC
(P,N). By definition of VS,

RC(c) ∈ [RI(P), �RI(N)] and RC(c) ∈ CRC
. Thus, RC(c) ∼ RC(c) and

RC(c) ∈ H([RI(P), �RI(N)]). It proves that c ∈ RV SH(P,N). The second part
is the previous proposition.

4 Algorithms and Implementation

The method proposed to deal with inconsistency when using RVS is to search
a strategy Pa such that RV S(Pa) does not collapse. The algorithm is the fol-
lowing : starting with the partition Pa = {(P,N)}, we refine it by dividing its
larger part in two until RV S(Pa) does not collapse. This ensures that if there
exists Pa such that RV S(Pa) does not collapse, then we will find one.

Computing RVS extensively is not affordable, except on toy problems. Thus,
we propose to find a bounding segment to the simple RV S(P,N).

244 V. Dubois and M. Quafafou

Proposition 6. Given positive and negative example sets P,N , we search for
P ′, N ′ such that:

P ′ = {x ∈ LI |∀c ∈ RV SH(P,N), c cover x} (7)
N ′ = {x ∈ LI |∀c ∈ RV SH(P,N),¬c cover x} (8)

We have the following VS bound for RV SH(P,N)

RV SH(P,N) ⊂ V SLC
(P ′, N ′) (9)

Proof. Any concept c in RV SH(P,N) cover all example in P ′ and no example
in N ′, and is in LC . Therefore, c is in V SLC

(P ′, N ′)

Property 5. If ∼ restriction on CRC
is reflexive, then:

V SLC
(P,N) ⊂ RV SH(P,N) ⊂ V SLC

(P ′, N ′) (10)

Corollary 1. If ∼ restriction on CRC
is reflexive, then N ′ ⊂ N and P ′ ⊂ P .

Proof. The previous property gives V SLC
(P,N) ⊂ V SLC

(P ′, N ′). Equivalently,
(P ′, N ′) ⊂ (P,N): the more example, the smaller the VS.

Computing P ′ and N ′ may be a hard task if H is only known extensively.
However, we expect that in case where H is defined using logic proposition,
figuring out P ′ and N ′ is affordable (it is possible do define H to fit our needs).
If any representable concept is similar to itself, then the corollary hold. In this
case, we only need to test each example.

4.1 RVS Approximation Combination

RVS can be approximated by using simple RVS approximation and Hirsh prop-
erty on VS intersection:

RV SH(Pa) ⊂ V SLC
(
⋃

i

P ′
i ,

⋃

i

N ′
i) (11)

Using this property, we approximate RVS by using only classical VS tools.
VS use and computation is a well known problem, and any results on VS apply
here.

4.2 Refining RVS Approximation

The RVS approximation by VS may be considered as a sufficient result: it allows
concept learning in case where VS collapsed by using VS as a tool. but it may
be interesting to give a glimpse at the “real” RVS. As RVS set is not a segment
(in fact, it is not a convex set), it can only be bounded by a pair of boundary
sets S and G, not fully described. The previous approximation provides such
bounds, namely the approximation VS bounds, but there is no guarantee that
any element in S or G is actually in RVS. So the idea is to refine these bound by
using each simple RVS in turn until it collapse or an element in RVS is found.

Concept Learning with Approximation: Rough Version Spaces 245

Table 1. Positive and negative examples

P/N P’/N’
P1 sun warm normal strong warm same P ′

1

P1 sun warm high strong warm same P ′
1

P1 sun warm high strong cool change P ′
1

P1 sun warm normal strong cool change P ′
1

P1 rain cold normal weak warm same
P2 sun warm normal weak warm same
P2 sun cold normal strong warm same
N1 rain cold high strong warm change N ′

1

N1 rain cold normal strong warm same N ′
1

N1 rain cold normal weak cool change N ′
1

N1 rain cold normal weak cool same N ′
1

N1 sun cold normal weak warm same N ′
1

N1 rain warm normal weak cool same N ′
1

N2 rain cold high weak cool same N ′
2

N2 rain cold high strong warm change N ′
2

N2 rain cold normal strong cool same
N2 sun cold normal strong warm change

5 RVS by Hand

This example is strongly inspired by Mitchell EnjoySport’s one in [10]. It explains
the extend if empty algorithm on data for a case where RV SH(P,N) collapse,
and show how it is possible to find a successful strategy. LI = (sun, rain) ×
(warm, cold) × (normal, high)
× (strong, weak) × (warm, cool) × (same, change)

LC = (sun, rain, #) × (warm, cold, #) × (normal, high, #)
× (strong, weak, #) × (warm, cool, #) × (same, change, #) ∪ {∅}

Examples are given in table 5 (N = N1 ∪N2 and P = P1 ∪P2) H(A) = {a ∈
CRC

/∃a′ ∈ A, |a∆ a′| ≤ 1}
This states that approximately valid concepts are defined by the following

properties: They are representable and they classify all examples as some valid
concept, except at most one.

Remarks that c ∈ CRC
⇒ c ∈ [c], so ∼ is reflexive on CRC

. Hence, we have
P ′ ⊂ P and N ′ ⊂ N (Corollary 1).

If p is in P but not in P ′, it means that it exists c ∈ H([P, �N]) such that
p �∈ c, i.e. c ∈ CRC

∩ [P −{p}, �N −{p}]. This state that V SLC
(P −{p}, N ∪{p})

does not collapse. Conversely, if it does not collapse, p is not in P ′. We find dual
property for N and N ′. By using this on P,N , we have that P ′ = P and N = N ′,
and then RV SH(P,N) = V SH(P,N) = ∅. Thus, we need another strategy. Let
us try Pa = {(P1, N1), (P2, N2)}.

By using collapse tests, we get P ′
1, P

′
2 and N ′

1, N
′
2 given in table 5. Using these

result and the approximation property of RVS, we found that: RV SH(Pa) ≤
V SLC

(P ′
1 ∪ P ′

2, N
′
1 ∪ N ′

2).

246 V. Dubois and M. Quafafou

We search S and G bounding set for V SLC
(P ′

1 ∪ P ′
2, N

′
1 ∪ N ′

2): S =
{(sun,warm, #, strong, #, #)}

G={(sun,warm, #, #, #, #), (#, warm, #, strong, #, #), (sun, #, #, strong, #, #)}
Actually, V S = S ∪ G. Let us now search a concept in RV SH(Pa). The

concept in S is not valid according for RV SH(P2, S2). The first concept in G is
the only one valid.

So we have RV SH(Pa) = {(sun,warm, #, #, #, #)}.
If it had been empty, we would have try to refine our strategy. Obviously, if

each example is isolated, we get a non empty RVS (∅ is in this RVS). We are
sure to always find a valid strategy.

6 Conclusion

In this paper, we have proposed an approximative extension of the classical con-
sistency property by using rough set theory. This allowed us to build an approxi-
mative concept learning framework, and an improved Version Space, namely the
Rough Version Space. Taking advantage of some useful properties of this Rough
Version Space, we proposed some general methods and algorithms to compute
this Rough Version Space. These have been applied on an example where clas-
sical version space would have collapsed, and our methods give a meaningful
result.

As previously stated here, methods and algorithms proposed are generic. It
is possible to take advantage of particular approximation operator to develop
more efficient specific approach to handle RVS.

References

1. Mitchell, T.M.: Version Spaces: An approach to Concept Learning. PhD thesis,
Stanford University (1978)

2. Mellish, C.: The description identification problem. Artificial Intelligence 52 (1991)
151–167

3. Haussler, D.: Quantifying inductive bias: AI learning algorithms and valiant’s
learning framework. Artificial Intelligence 36 (1988) 177–221

4. Hirsh, H.: Polynomial-time learning with version spaces. In : National Conference
on Artificial Intelligence (1992) 117–122

5. Hirsh, H., Mishra, N., Pitt, L.: Version spaces without boundary sets. In:
AAAI/IAAI. (1997) 491–496

6. Sablon, G., De Raedt, L., Bruynooghe, L.: Iterative versionspaces. Artificial Intel-
ligence 69 (1994) 393–409

7. Sebag, M.: Delaying the choice of bias: A disjunctive version space approach. In:
International Conference on Machine Learning.(1996) 444–452

8. Pawlak, Z.: Rough Sets: Theorical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Dordrecht, Netherlands. (1991)

9. Yao, Y.Y.: Constructive and algebraic approaches for generalized rough set models.
(In: Bulletin of International Rough Set Society)

10. Mitchell, T.M.. Machine Learning. McGraw-Hill. (1997)

	Introduction
	Concept Learning
	Notations
	Version Spaces

	Approximation and Version Spaces
	Rough Consistency
	RVS Definition
	Properties

	Algorithms and Implementation
	RVS Approximation Combination
	Refining RVS Approximation

	RVS by Hand
	Conclusion

